
Nebularine CEP (Purine Riboside CEP, BA 0265) Product Information

Nebularine (purine riboside) lacks exocyclic functional groups and offers an altered hydrogen bonding scheme while retaining base stacking ability.^{1.4} It can be viewed as an adenosine analog with the hydrogen bond donor deleted. Sequential replacement of conserved adenosine residues in hammerhead ribozymes by nebularine residues^{2b,3} suggested the presence of interstrand non-Watson-Crick hydrogen bonding.^{2b} Depending on the position of the nebularine residue, cleavage rates were either unchanged or diminished.^{2b,3} Incorporation of nebularine into a GNRA tetraloop has also been useful for studying this type of RNA structural feature.⁴ Nebularine has been installed into RNA using two different phosphoramidites, one with 2'-*O*-THP protection¹ and one with 2'-*O*-TBDMS protection.²⁻⁴ We offer the latter, Nebularine CEP (BA 0265) as well as the 2-deoxy version, 2'-Deoxynebularine CEP (BA 0016).

Coupling, cleavage, and nucleobase deprotection: Fu, et al., suggest doubling the concentration of the phosphoramidite to 0.2 M.^{2b} Wörner, et al., used a 12 min coupling.⁴ Cleavage and nucleobase deprotection were accomplished several ways: Slim and Pritchard^{2b} used G^{Pac}, A^{Pac}, C^{Bz} phosphoramidites and carried out cleavage and base deprotection with methanolic ammonia at room temperature overnight, which they believed caused less strand cleavage than 55 °C as required for A^{Bz} and G^{Bz} deprotection. Fu, et al., employed standard phosphoramidites and 3:1 concentrated ammonium hydroxide:ethanol for 12 h at 55 °C, then 1 M TBAF in THF for 16 h.³ Wörner, et al., used standard phosphoramidites and concentrated ammonium hydroxide at 55 °C overnight, then Et₃N•(HF)₃, 24 h, rt.⁴

References:

- (1) SantaLucia, J., Jr.; Kierzek, R.; Turner, D. H. J. Am. Chem. Soc. **1991**, 113, 4313-4322.
- (2) (a) Slim, G.; Pritchard, C.; Biala, E.; Asseline, U.; Gait, M. J. Nucleic Acids Symp. Ser. 1991, 24, 55-58. (b) Slim, G.; Gait, M. J. Biochem. Biophys. Res. Commun. 1991, 183, 605-609.
- (3) Fu, D.-J.; Rajur, S.; McLaughlin, L. W. Biochemistry 1993, 32, 10629-10673.
- (4) Wörner, K.; Strube, T.; Engels, J. W. Helv. Chim. Acta 1999, 82, 2094-2104.

BERRY&ASSOCIATES